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Abstract

We address POLAR@SemEval-2026: detect-
ing online polarization and predicting its type
and manifestation across languages. We tar-
get English (EN), Bengali (BN), and Punjabi
(PA) with a compact two-path model: a na-
tive multilingual encoder and a translate-to-
English encoder, combined by calibrated aver-
aging. To reduce ambiguity around culturally
loaded terms, we add a small document-level
sense summary computed only for a short cu-
rated term list. We compare against a simple
lexical baseline and evaluate with Macro–F1
on the official splits (pol, 2025).

1 Introduction

POLAR defines (T1) binary detection, (T2) type
classification (political, racial/ethnic, religious,
gender/sexual, other), and (T3) manifestation iden-
tification (stereotype, vilification, dehumaniza-
tion, extreme language, lack of empathy, invali-
dation) (pol, 2025). We focus on EN/BN/PA to
balance one high-resource and two lower-resource
languages where meaning often hinges on cultur-
ally specific terms (e.g., reservation, secular). Ac-
curate multilingual analysis supports monitoring,
cross-region comparison, and policy evaluation.

2 Related Work

Prior work on adjacent phenomena shows the
value of pretrained encoders with light auxiliary
signals: HatEval (SemEval-2019 Task 5) (Basile
et al., 2019), OffensEval 2019/2020 (Zampieri
et al., 2019, 2020), Toxic Spans (Pavlopoulos
et al., 2021), early feature studies (Waseem and
Hovy, 2016; Davidson et al., 2017), large-scale
abuse characterization (Founta et al., 2018), and
rationale-driven datasets (Mathew et al., 2021).
We follow this template but introduce a targeted
sense summary and a two-path ensemble adapted
to POLARs label space and EN/BN/PA.

3 Method

Two paths. Native multilingual: fine-tune a
multilingual encoder (e.g., XLM-Rbase) jointly on
EN/BN/PA with three heads: binary (T1) and
two multi-label heads (T2,T3). A single shared
backbone encourages transfer while heads spe-
cialize per subtask. Translate-to-English: trans-
late BN/PA to EN (short-text MT, e.g., Google
Translate) and process with an English encoder
(e.g., RoBERTabase/DeBERTa-v3base); filter obvi-
ous MT failures via length-ratio and language-ID
checks.
Targeted sense summary. We curate ∼20–50
potentially ambiguous polarization-related terms
per language (political/identity keywords). For a
given document we: (i) detect occurrences (af-
ter normalization), (ii) assign a sense per occur-
rence using public lexical/sense resources—either
a lightweight UKB/LMMS-style guess or simple
gloss matching against 2–3 short sense glosses,
and (iii) aggregate into a fixed-size vector (nor-
malized sense counts and/or confidence-weighted
proportions, plus a small confidence/entropy statis-
tic). We cap this summary at ≤64 dimensions and
concatenate it with the encoders pooled represen-
tation prior to each head. This injects disambigua-
tion where it matters while avoiding full-coverage
WSD.
Fusion. For each subtask we temperature-scale
logits on the dev set (per-language if helpful) and
average the two paths scores. Final decisions use
per-label thresholds tuned on dev. No other fusion
is used.

4 Experimental Setup

Task & data. We use the official
POLAR@SemEval-2026 splits and labels;
the primary metric is Macro–F1 per subtask and
language (pol, 2025). We report EN/BN/PA and
the macro-average.



Inputs & outputs. Input: a short post in
EN/BN/PA. Outputs: (T1) binary polarization;
(T2) multi-label type; (T3) multi-label manifesta-
tion. Example: They are ruining our traditions; we
must stop them. ⇒ polarized; {political}; {vilifi-
cation, extreme language}.
Implementation. Encoders: XLM-Rbase for
the native path; RoBERTabase/DeBERTa-v3base
for EN. Max length 128–256; base-size check-
points for efficiency. Mini-batches are language-
balanced (EN:BN:PA) to stabilize training. Sense
summary: fixed term lists (per language); per-
occurrence sense from WordNet/BabelNet via
UKB/LMMS-style inference or gloss matching;
pooled to a small document vector; concatenated
with the pooled encoder output before the heads.
Training: T1 uses binary cross-entropy; T2/T3 use
multi-label BCE with class weights (and light la-
bel smoothing). Thresholds are selected per label
on the dev set to maximize Macro–F1 and then
fixed for test. Early stopping on dev Macro–F1;
dropout on heads and small weight decay. Calibra-
tion: temperature scaling on dev (optionally per-
language) prior to ensembling; translation outliers
are dropped by simple length-ratio/LID checks.
Resources: official POLAR data, open encoder
checkpoints, and free MT; no LLMs or paid APIs
are required.
Comparisons & ablations. We compare: (a)
the lexical baseline (below), (b) native-only, (c)
translate-to-EN-only, (d) ensemble, and (e) en-
semble without the sense summary. If com-
pute permits, we also report small optional
ablations: a compact socio-linguistic indicator
block (pronoun ratios, negation, intensifiers, ba-
sic toxicity/emotion counts), light back-translation
(EN↔BN/PA) for minority labels, and brief in-
language domain adaptation.

5 Baseline

Translate-to-English + Linear models. BN/PA
→ EN; extract TF–IDF word/character n-grams;
train a linear SVM for T1 and one-vs-rest logis-
tic regression for T2/T3. This transparent baseline
mirrors effective starting points in related shared
tasks (Basile et al., 2019; Zampieri et al., 2019,
2020; Pavlopoulos et al., 2021).
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